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Abstnet. We have applied the Monte Carlo renormalization group (MCRG) method to 
study the problem of self-avoiding walks on the Sierpinski gasket family of fractals. Each 
member of  the family is labelled by an integer b, Z s b s m ,  and when b + m  both the 
fractal d,and spectral ds dimension approach their Euclidean value 2. W e  have calculated 
the critical exponent U, associated with the mean square end-to-end distance, up to b = 80. 
Our MCRG results deviate at most 0.03% from the available exact results (for 2 s b s 9 ) .  
The obtained data show clearly that Y monotonically decreases with b and cro~ses the 
Euclidean value Y = a  at b =27, that is, before entering the fractal to Euclidean crossover 
region that occurs in the limit b + m. 

The statistics of self-avoiding walks (SAWS) on random fractals, and in particular on 
critical percolation clusters, has acquired the attribute of being a rather controversial 
problem in the past decade (see, for example, Lam (1990) and Kim (1990)). The main 
query concerns correct values of the critical exponent U for the mean square end-to-end 
distance of SAWS on fractals, defined by ( R L )  - N2”, where N is the number of steps. 
In addition to various numerical approaches to the problem, several Flory-type for- 
mulae for U have been proposed (see, for example, Roy and Blumen (1990) and 
references quoted therein). Almost all of these proposals have been tested against 
available results for U of SAWS on deterministic fractals (Rammal et al 1984). For this 
reason, knowledge of exact values of v on a class of non-trivial deterministic fractals 
provides a systematic test of the phenomenological proposals. However, so far only a 
limited sequence of results for the Sierpinski gasket class of fractals has been available 
(ElezoviC et al 1987). 

T h e  limited sequence of the Sierpinski gasket results, that served (Dekeyser et al 
1987, Aharony and Harris 1989) as a testing ground for the phenomenological pro- 
posals, deserved to be extended in its own right. Indeed, the exact results of ElezoviC 
et al (1987), together with the related finite-size scaling arguments of Dhar (1988). 
engendered an  interesting puzzle. Each member of the Sierpinski gasket class of fractals 
is labelled by an integer b (2  S b S CO), and when b approaches very large values both 
the fractal dimension d, and spectral dimension ds approach their Euclidean value 2 
(with the correction terms In 2/ln b and In(ln b)/ln b, respectively). Now, the exact 
values of U, known for 2< b S 9 (Dhar 1978, ElezoviC et al 1987, Bubanja and Kneievii: 
1991), are larger than the Euclidean value U = :  (Nienhuis 1982) and monotonically 
decrease with increasing b. On the other hand, using finite-size scaling arguments, 
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Dhar (1988) predicted that U should tend to from below when b +co, that is, with a 
negative correction term proportional to In(ln b)/ln b. This implies that U, as a function 
of b, should be a non-monotonic function, such that at some puzzling finite b >. 9 crosses 
the Euclidean value a ,  which does not seem very plausible. To unravel this puzzle we 
apply the Monte Carlo renormalization group (MCRC) method, since the exact calcula- 
tion of U cannot be pushed much farther beyond b = 9. 

For the sake of introducing the MCRG method it is useful to outline the exact 
renormalization group approach of calculating U for the Sierpinski gasket class of 
fractals. First, it is necessary to recall that each member (characterized by b) of the 
class can be constructed in stages. At the initial stage ( n  = 1) of the construction there 
is an equilateral triangle (generator) that contains b2 identical smaller triangles of unit 
side length, out of which only the upward oriented are assumed to be physically present 
(see, for example, figure 1 in the paper by ElezoviC et al (1987)). The subsequent 
fractal stages are constructed self-similarly. Fractals constructed in this way allows of 
formulating exact renormalization group (RG) suitable for calculating critical exponents 
for SAW. To calculate the critical exponent U we need to study the one-parameter 
renormalization group transformation 

where B is the weight (fugacity) of one SAW step that traverses the unit triangle, aN 
is number of all possible SAW of N steps that traverse (see figure 1) the fractal generator, 
and B' is the corresponding renormalized fugacity. The specific value of U, for a given 
b, follows from 

In b 
In A 

U = -  

where A is the relevant eigenvalue of the RG equation (1) at the non-trivial fixed point 
0 < B* < 1 (Elezovii. et al 1987) 

Thus the central task in evaluation of U, for a given b, consists of determining number 
aN of all possible  SAW^ of N steps that traverse the fractal generator. Unfortunately, 
the exact enumeration of SAWS cannot be easily done for b larger than b = 9 (for 

iBI Ibl 

Figure I. The SAW traversing the b = 8 fractal generator with the minimum ( a )  and 
maximum ( b )  number of steps. The SAW paths are represented by the wavy solid linea. 
One should note that the walker is not allowed to cross any downward oriented unit 
triangle,andifiterossesanupwardorientedunit triangle it  isneverallowedtoenteritagain. 
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example, to calculate in this way U for 6 = 10 it would require about 85 days of 
continuous operating of the IBM 3090 mainframe). 

For the reasons explained in the preceding paragraph, we apply the MCRG method 
to learn U for SAW on the fractals with b > 9 .  It can be expected that, due to both the 
inherent self-similarity and the finite ramification of the underlying fractals, this method 
works better here than in the case of regular lattices. The starting point of the method 
(Reynolds and Redner 1980) consists of treating E' as the grand canonical partition 
function that comprise all possible SAW that enter and exit the fractal generator at two 
fixed apexes. Accordingly, the relation (1) can he written in the following form 

(4) 

where (N(B)) is given by 

which seems to he the average number of steps made, at fugacity E, by all possible 
SAW that pass the generator. Comparing (3) and (41, we obtain the equality A = (N(B*)), 
and thereby we find 

In b 
ln(N(B*))' 

U =  

This formula enables us to determine the critical exponent U by calculating (N(B*)) 
via the constant-fugacity MCRG method (Redner and Reynolds 1981). 

For a given b, we begin with determining the critical fugacity E * =  l/p, where p 
is the connectivity constant (ElezoviC et al 1987). To this end, we start the Monte 
Carlo (MC) simulation with an initial guess for the fugacity Bo in the region O <  Bo < 1. 
Here Bo can he interpreted as the probability of making the next step along an available 
direction from the vertex that the SAW walker has reached. Let us assume that So is 
the total number of the MC simulations of SAW (at the chosen E d ,  and let Sb of them 
he those that traverse the fractal generator. Hence the ratio Sb/So can he accepted as 
the renormalized fugacity Bb of the coarse-grained fractal structure. In this way we 
get the value of the sum ( 1 )  without specifying the set aN. Then, the next values 
E ,  ( n  > l ) ,  at which the MC simulation should be performed, can he found by using 
the 'homing' procedure (Redner and Reynolds 19811, which can be terminated at the 
stage when the difference E. - E n - ,  becomes less than the statistical uncertainty 
associated with B.-, . Consequently, B* can be identified with the last value B. found 
in this way. 

Having found E* we can evaluate (N(B*)) by performing the MC simulation at 
this particular value. During this simulation it is important to record the number SY, 
of SAW that traverse the fractal generator in N steps. These data allow us to write 

where S: is the number of all SAW that traverse the fractal generator at the critical 
fugacity E*.  Thereby we can learn the value of (N(B*)) and, through formula (6), the 
critical exponent U. Using the HP9000/S800 computer, we have in this way been able 
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to calculation U up to b = 80. The time needed for this calculation increases exponen- 
tially with b (for example, lo5 simulations, for b = 10 and b = 80, at the corresponding 
critical fugacities, required 10 minutes and 46 hours of the available CPU time, respec- 
tively). 

Our results for the critical exponent U for b 2 10 are given in table 1, whereas 
results for 2 S b S 9 we compare here with the available exact results. For b = 2 Dhar 
(1978) found the exact value u=O.79862, while we have obtained U =  

0.798 46 f 0.000 53. For 3 S b S 8, the set of exact values (0.793 64, 0.788 40, 0.784 01, 
0.780 33, 0.777 17, 0.77441}, calculated by ElezoviC et nl (1987), should be compared 
with the set of our MCRG results {0.793 66*0.000 39, 0.788 23*0.000 33, 0.78402f 
0.000 29, 0.780 1OfO.000 27, 0.777 28*0.000 25, 0.774 24*0.000 24). Finally, for b = 9 
we can compare the exact value u=O.771 96, obtained recently by Bubanja and 
KneieviC (1991), with our result u=O.772 18*0.00023. All our results quoted here 
have been obtained by performing 2 x 10’ simulations. We can see that each of our 
results deviates at most 0.03% from the relevant exact value, and thus we can conclude 
that the agreement between the exact and the MCRG results is strikingly good. 

In figure 2 we have depicted our results for v, together with the available exact 
results. From this figure, and from table 1, it follows that U is a monotonic function 
of b ( i n  the entire region 2 S b S 80), and crosses the Euclidean value U = 2 at b = 27. 
This finding, in conjunction with the prediction of Dhar (1988) about the limit b+m,  
implies that U should display a minimum at some bmim> 80. In other words, if the 
prediction (Dhar 1988) that U should approach the Euclidean value 2 in the limit b +a 
from below (that is, with the negative correction term of the type In(ln b)/ln b) is 
valid, then U for SAW should be a non-monotonic function of b, and this function should 
have a minimum at some value of b larger than b = 80. 

Table 1. The MCRO results for the critical exponent Y of SAW on the Sierpinski gasket 
type of fractals for IO 4 b 4 80. The particular values of b have been chosen in such a way 
as to make the corresponding data as much as possible uniformly distributed on the I lb  
scale. The given error bars are determined by statistics of the method applied (Redner and 
Reynolds 1981). 

No of MC 

b realizations U* (N(U*)) Y 

IO 
12 
I 5  
17 
20 
22 
26 
26 
27 
30 
35 
40 
50 
60 
70 
80 

1 06 

2x105 
2x105 
3x10’  
5x10’ 
2 x  105 
2 x  105 
2x105 

2x105 
1 . 2 X l O J  

3x10’  

2x10’  
IO’ 

1 0s 
1 . 4 ~  IO* 

1 0 5  

0.395 86*0.00007 
0.38037+0.000 13 
0.363 9610.000 I 1  
0.355 93+0.00008 
0.34681 r0 .00006  
0.341 9710 .00008  
0.336 02 *O.OOO 08 
0.3344410.00007 
0.332 85 + 0.000 06 
0.32876+0.00007 
0.323 5010.00008 
0.319 3 6 i 0 . 0 0 0 0 6  
0.31396iO.WO07 
0.3 IO 11 10.000 06 
0.3074510.00006 
0.305 46+0.00006 

19.908+0.008 
25.6410.02 
34.9510.03 
41.79 * 0.03 
52.59*0.03 
60.31 kO.05 
72.44 + 0.06 
76.61 +0.07 
81.04 + 0.06 
94.33 *0.08 
117.6 + 0.1 
142.9 1 0.1 
197.8+0.1 
256.7*0.2 
322.1 1 0 . 6  
391.6i0.7 

0.769 80*0.000 IO 
0.765 94+0.000 20 
0.761 99+0.000 18 
0.759 02r0.000 14 
0.756 03 f 0.000 I I 
0.75400+0.000 16 
0.751 5810.000 15 
0.75093+0.000 I5 
0.74991 *O.OOO 12 
0 .74805 i0 .000  14 
0.745 7410.000 18 
0.743 3610.000 15 
0.73991*0.000 IO 
0.7379810.000 12 
0.735 7010.000 22 
0.73396+0.00021 
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Figure 2. The MCRG (solid circles) and exact (small open triangles) results for the critical 
exponent Y as a function of l ib.  The horizontal broken line represents the Euclidean value 
u = f  (Nienhuis 1982). In the inset the MCRG results are compared with the results that 
follow from the phenomenological formulae uF,  vRn. U,,), and uDMS given by relations 
(8). (9). (IO) and (11). respectively. The related curves uRn. vAH and uDMS are plotted 
up to b=650,  which corresponds to the last calculated value of the requisite spectral 
dimension (MiloSeviC et al 1988). The error bars related to the MCRO data are not depicted 
in the figure since they are at most of the size of the radii of the solid circles that rewesent 
the data. 

The observed decrease of Y in the region 2 6 b 6 80, and the expected decrease 
beyond b = 80, imply, according to the formula (6 ) ,  that ( N (  E * ) )  increases faster than 
b. This decrease of Y can be explained in the following way. For values of b close to 
b = 2, the dominant number of SAWS are those that quickly traverse the fractal generators 
(see figure l ( a ) ) ,  whereas for larger b the walks that contain many rebounds from the 
generator edges (see figure l (b))  begin to predominate, which makes the walk look 
like the Hamiltonian walk (see, for example, Bradley 1989). This argument can be 
corroborated numerically. Indeed, for the Hamiltonian walks Y = l/dc, and, when 
b + 00, the asymptotic form Y = f +  In 2/(4 In b) is valid. On the other hand, a straightfor- 
ward numerical analysis of our data for b > 20 reveals that the best fit of Y can be 
obtained assuming the variable l / ln b. 

In the inset of figure 2 we present a comparison of the MCRG results, for b 2 10, 
with the results that follow from various phenomenological formulae for Y. All these 
formulae stem from attempts to find a finite set of fractal properties which determine 
the SAW critical exponents. The simplest formula 

vF=3/(2+dr) ( 8 )  

is a straightforward generalization (Kremer 1981, Sahimi 1984) of the Flory formula 
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v = 3 / ( 2 + d ) ,  where d is the Euclidean dimension of a substratum. The next formula 

includes both the fractal dr and spectral d. dimension (Rammal et a1 1984). Recently 
several groups of authors (Aharony and Harris 1989, Bouchaud and Georges 1989, 
Roy and Blumen 1990) proposed a new relation between Y and the fractal properties, 
which in the case of the Sierpinski gasket fractals has the form 

vRW= 3dJddZ-k d,) (9) 

Y.AH = ( 4 4 -  dJ/  Idd2dr- ds+ 2)l. (10) 

Y D M ~ =  ( 2 4 +  ds ) / tdd2+dr ) l  (11) 

Finally, we quote here the formula 

which follows from the work of Dekeyser ef a/ (1987). One should notice that the last 
three formulae predict, in agreement with the finite-size scaling argument (Dhar 1988). 
that U should approach the Euclidean value:, when b+  m, with thenegative correction 
term proportional to In(1n b)/ln b. However, one can also notice that none of the 
quoted formulae provide satisfactory fit to the existing values of Y for SAWS on the 
Sierpinski gasket type of fractals. 

In conclusion, we would like to point out that the application of the MCRG method 
to the study of  SAW^ on the Sierpinski gasket family of fractals produced results that 
agree quite well with the previously known exact results. Besides, new results confirm 
that the critical exponent U crosses the Euclidean value before enfering the fractal to 
Euclidean crossover region that appears in the limit b + Co. This finding, together with 
the fact that all phenomenological proposals deviate significantly from the MCRC 

results, may serve as an instructive caveat in the future quests for a proper theory of 
 SAW^ on random fractals, such as the critical percolation clusters. 
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